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Abstract. We derive expressions for the shape Hessian operator of the data misfit

functional corresponding to the inverse problem of inferring the shape of a scatterer

from reflected acoustic waves, using a Banach space setting and the Lagrangian

approach. The shape Hessian is then analyzed in both Hölder and Sobolev spaces.

Using an integral equation approach and compact embeddings in Hölder and Sobolev

spaces, we show that the shape Hessian can be decomposed into four components, of

which the Gauss-Newton part is a compact operator, while the others are not. Based

on the Hessian analysis, we are able to express the eigenvalues of the Gauss-Newton

Hessian as a function of the smoothness of the shape space, which shows that the

smoother the shape is, the faster the decay rate. Analytical and numerical examples

are presented to validate our theoretical results. The implication of the compactness

of the Gauss-Newton Hessian is that for small data noise and model error, the discrete

Hessian can be approximated by a low-rank matrix. This in turn enables fast solution of

an appropriately regularized inverse problem, as well as Gaussian-based quantification

of uncertainty in the estimated shape.
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1. Introduction

A feature of many ill-posed inverse problems is that the Hessian operator of the data

misfit functional is a compact operator with rapidly decaying eigenvalues. This is a

manifestation of the typically sparse observations, which are informative about a limited

number of modes of the infinite dimensional field we seek to infer. The Hessian operator

(and its finite dimensional discretization) play an important role in the analysis and

solution of the inverse problem. In particular, the spectrum of the Hessian at the

solution of the inverse problem determines the degree of ill-posedness and provides

intuition on the construction of appropriate regularization strategies. This has been

observed, analyzed, and exploited in several applications including shape optimization

[1, 2] and inverse wave propagation [3, 4, 5], to name a few.

Moreover, solution of the inverse problem by the gold standard iterative method—

Newton’s method—requires “inversion” of the Hessian at each iteration. Compactness

of the Hessian of the data misfit functional accompanied by sufficiently fast eigenvalue

decay permits a low rank approximation, which in turn facilitates rapid inversion or

preconditioning of the regularized Hessian [3, 6]. Alternatively, solution of the linear

system arising at each Newton iteration by a conjugate gradient method can be very fast

if the data misfit Hessian is compact with rapidly decaying eigenvalues and the conjugate

gradient iteration is preconditioned by the regularization operator [7]. Finally, under a

Gaussian approximation to the Bayesian solution of the inverse problem, the covariance

of the posterior probability distribution is given by the inverse of the Hessian of the

negative log likelihood function. For Gaussian data noise and model error, this Hessian

is given by an appropriately weighted Hessian of the data misfit operator, e.g., [8]. Here

again, exploiting the low-rank character of the data misfit component of the Hessian is

critical for rapidly approximating its inverse, and hence the uncertainty in the inverse

solution [4, 5, 9, 10].

In all of the cases described above, compactness of the data misfit Hessian is a

critical feature that enables fast solution of the inverse problem, scalability of solvers to

high dimensions, and estimation of uncertainty in the solution. With this motivation,

here we analyze the shape Hessian operator for inverse acoustic shape scattering

problems, and study its compactness. Our analysis is based on an integral equation

formulation of the Helmholtz equation, adjoint methods, and compact embeddings

in Hölder and Sobolev spaces. These tools allow us to state the shape derivatives

in a Banach space setting, and then to analyze the shape Hessian in detail. In

particular, the Gauss-Newton component of the full Hessian is shown to be a compact

operator, and the decay rate of its eigenvalues is quantified as a function of the shape

smoothness. Furthermore, under certain conditions, the eigenvalues can be shown to

decay exponentially.

The remainder of the paper is organized as follows. Section 2 briefly derives and

formulates two dimensional forward and inverse shape acoustic scattering problems,

followed by Section 3 on a general framework for shape derivatives in a Banach space
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setting. Using the results in Section 3 and a Lagrangian approach, we then derive shape

derivatives for the inverse shape scattering problem in Section 4. Section 5 justifies

the shape derivations by studying the well-posedness of the (incremental) forward and

(incremental) adjoint equations, and the regularity of their solutions. Next, we analyze

the shape Hessian in Hölder spaces in Section 6, and then extend the analysis to Sobolev

spaces in Section 7. Section 8 expresses the decay rate of the eigenvalues of the Gauss-

Newton component in terms of the shape smoothness. In order to validate our theoretical

developments, we give analytical as well as numerical examples in Sections 9 and 10.

Finally, the conclusions of the paper are presented in Section 11, and straightforward

extensions of two dimensional results to three dimensions are discussed in the Appendix.

2. Forward and inverse shape scattering formulations

2.1. Forward shape scattering formulation

For simplicity of exposition, we shall exclusively work with the two dimensional setting;

extensions to three dimensions will be presented in the Appendix. We further assume

that the scatterer ΩS (for convenience, one scatterer is considered, but all the results

in this paper hold true for multiple scatterers) under consideration is sound-soft. If the

incident wave is a plane wave, we can eliminate the time harmonic factor e−iωt, where

i2 = −1, and the acoustic scattering problem can be cast into the following exterior

Helmholtz equation [11]:

∇2U + k2U = 0 in Ω, (1a)

U = −U I on Γs, (1b)

lim
r→∞

√
r

(
∂U

∂r
− ikU

)
= 0, (1c)

where k is the wave number, U the scattered field, U I the incident field which is assumed

to be an entire solution of the Helmholtz equation (1a), Ω the exterior domain given

by Ω = R2 \ ΩS, and (1c) the radiation condition (1c) which is assumed to be valid

uniformly in all directions x
‖x‖ .

We have derived the governing equations (1) for two dimensional acoustic scattering

under time harmonic incident wave assumption. It turns out that two dimensional

electromagnetic scattering on perfect electric conducting obstacles is governed by the

same set of equations. Consequently, all the results in this paper are valid for both

acoustic and electromagnetic scattering problems in two dimensions.

2.2. Inverse shape scattering formulation

For the inverse problem, the task is to reconstruct the scatterer’s shape given scattered

field data observed at some parts of the domain. For simplicity in the following analysis,

the observed scattering data is assumed to be noise-free.
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The inverse task can be formulated as the following PDE-constrained shape

optimization problem:

min
ΩS
J =

∫
Ω

K(x)
∣∣U − U obs

∣∣2 dΩ, (2)

subject to

∇2U + k2U = 0 in Ω, (3a)

U = −U I on Γs, (3b)

lim
r→∞

√
r

(
∂U

∂r
− ikU

)
= 0, (3c)

where quantities with superscript “obs” are the observed data. K(x) denotes the

observation operator with compact support and suppK ⊂ Ω. We identify

Kϕ =

∫
Ω

KϕdΩ =

∫
Ω

1suppKϕdΩ,

where 1suppK is the characteristic function of the set suppK. In particular, if the

measurements are pointwise at xobsj , j = 1, . . . , N obs, we have

Kϕ =

∫
Ω

KϕdΩ =
Nobs∑
j=1

ϕ
(
xobsj

)
.

For simplicity in writing, we define Γb = suppK.

3. Shape derivatives in a Banach space setting

If we restrict our attention to a special shape space which is Banach, shape calculus

becomes usual differential calculus on Banach spaces and many interesting conclusions

can be drawn. As we shall see in the sequel, only Fubini’s theorem and Leibniz’ rule are

necessary to derive the first and second order shape derivatives in this setting.

Following [12, 13], we represent the shape by its boundary. In particular we assume

that the scatterer ΩS  R2 is a simply connected domain and starlike with respect to

the origin. Thus, its boundary ∂ΩS can be parametrized as

∂ΩS ≡ Γs = {r = r(θ)er : θ ∈ [0, 2π]} , er = [cos θ, sin θ]T . (4)

We assume that Γs belongs to Hölder continuous class Cm,α for 0 < α ≤ 1. That is, the

radius r lives in the Hölder continuous space Cm,α([0, 2π]) with periodic condition

r(j)(0) = r(j)(2π), j = 0, . . . ,m, (5)

where the superscript (j) denotes the jth derivative with respect to θ. To the end of

the paper, unless otherwise stated, functions defined on [0, 2π] are periodic in the sense

of (5).
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We are now in the position to derive the shape derivatives. For the purpose of this

paper, it suffices to consider the first order shape derivative of the following functional

I =

∫
Ω

f(x) dΩ. (6)

The following Lemma provides the shape derivatives of I that will be used later in the

derivation of the shape Hessian for our inverse shape scattering problems (an analogous

result for interior problems can be found in [13]).

Lemma. 1 Assume that f ∈ C1 (R2) then I is twice continuously Fréchet differentiable

for all r ∈ C1 ([0, 2π]), and its shape derivatives are given as

DI(r; r̂) = −
∫ 2π

0

frr̂ dθ = −
∫

Γs

f
rr̂√

r2 + r′2
ds, (7a)

D2I(r; r̂, r̃) = −
∫ 2π

0

(
∂f

∂er
+
f

r

)
rr̂r̃ dθ = −

∫
Γs

(
∂f

∂er
+
f

r

)
rr̂r̃√
r2 + r′2

ds, (7b)

for all r̂, r̃ ∈ C1 ([0, 2π]).

Proof.

We use the Leibniz rule to compute the first Gâteaux variation to obtain the shape

derivative formulas (7a) and (7b). Then it is obvious that both DI(r; r̂) and D2I(r; r̂, r̃)

are linear and continuous with respect to r̂ (and r̃). Now the continuity of DI(r; r̂) and

D2I(r; r̂, r̃) with respect to r is straightforward owing to f ∈ C1 (R2). Hence, a classical

result on sufficiency for Fréchet derivative [14] ends the proof.

4. Shape derivative derivations for inverse wave scattering problems

In this section we derive the shape gradient and shape Hessian using a reduced space

approach, and the justifications for our derivations are provided in the next section. We

begin with a useful observation on the radiation condition. Since the radiation condition

(1c) is valid uniformly in all directions x
‖x‖ , we rewrite the radiation condition as

∂U

∂r
− ikU = ϕ(r) = o

(
r−1/2

)
,

where r is the radius of a sufficiently large circle Γ∞.

It can be seen that the cost functional (2) is real-valued while the constraints (3a)–

(3c) are complex-valued. Consequently, the usual Lagrangian approach will not make

sense and care must be taken. Following Kreutz-Delgado [15], we define the Lagrangian

as

L = J +

∫
Ω

u
(
∇2U + k2U

)
dΩ +

∫
Γs

us
(
U + U I

)
ds+

∫
Γ∞

ur

(
∂U

∂r
− ikU − ϕ

)
ds

+

∫
Ω

u
(
∇2U + k2U

)
dΩ +

∫
Γs

us

(
U + U

I
)
ds+

∫
Γ∞

ur

(
∂U

∂r
+ ikU − ϕ

)
ds, (8)
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where the overline, when acting on forward and adjoint states (and their variations),

denotes complex conjugate.

Taking the first variation of the Lagrangian with respect to u, us, ur in the directions

û, ûs, ûr and arguing that the variations û, ûs, ûr are arbitrary yield the forward equations

(3a)– (3c).

Now taking the first variation of the Lagrangian with respect to U and arguing that

its variation Û is arbitrary yield the following adjoint equations:

∇2u+ k2u = −K (U − Um) in Ω, (9a)

u = 0 on Γs, (9b)

lim
r→∞

√
r

(
∂u

∂r
+ iku

)
= 0. (9c)

The other adjoints variables are found to be

us =
∂u

∂n
on Γs, and ur = −u on Γ∞,

and they are eliminated so that the Lagrangian now becomes

L = J +

∫
Ω

u
(
∇2U + k2U

)
+∇ ·

[(
U + U I

)
∇u
]
dΩ

−
∫

Γ∞

u

(
∂U

∂r
− ikU − ϕ

)
ds−

∫
Γ∞

(
U + U I

) ∂u
∂r

ds

+

∫
Ω

u
(
∇2U + k2U

)
+∇ ·

[(
U + U

I
)
∇u
]
dΩ

−
∫

Γ∞

u

(
∂U

∂r
+ ikU − ϕ

)
ds−

∫
Γ∞

(U + U I)
∂u

∂r
ds. (10)

Now the shape derivative of the Lagrangian (10) can be obtained using formula (7a),

i.e.,

DJ (r; r̂) = −
∫ 2π

0

[
∇
(
U + U I

)
· ∇u+∇

(
U + U

I
)
· ∇u

]
rr̂ dθ, (11)

where the boundary conditions for both forward and adjoint states on the scatterer’s

surface have been used to lead to (11).

For the sake of convenience in deriving the shape Hessian, the state and adjoint

equations are best expressed in the weak form. As a direct consequence of the above

variational calculus steps, the weak form of the forward problem reads

S (r, U) =

∫
Ω

û
(
∇2U + k2U

)
+∇ ·

[(
U + U I

)
∇û
]
dΩ

−
∫

Γ∞

û

(
∂U

∂r
− ikU − ϕ

)
ds−

∫
Γ∞

(
U + U I

) ∂û
∂r

ds = 0, ∀û, (12)
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and similarly for the adjoint problem we have

T (r, U, u) =

∫
Ω

Û
[
∇2u+ k2u+K (U − Um)

]
+∇ ·

(
u∇Û

)
dΩ

−
∫

Γ∞

Û

(
∂u

∂r
+ iku

)
ds−

∫
Γ∞

u
∂Û

∂r
ds = 0, ∀Û . (13)

Next, the shape Hessian is obtained by simply computing the first variation of the

shape gradient DJ (r; r̂) using the shape derivative formula (7b), i.e.,

D2J (r; r̂, r̃) = −
∫ 2π

0

∂
[
∇
(
U + U I

)
· ∇u+∇

(
U + U

I
)
· ∇u

]
∂er

rr̂r̃ dθ

−
∫ 2π

0

[
∇
(
U + U I

)
· ∇u+∇

(
U + U

I
)
· ∇u

]
r̂r̃ dθ

−
∫ 2π

0

[
∇Ũ(r̃) · ∇u+∇Ũ(r̃) · ∇u

]
rr̂ dθ

−
∫ 2π

0

[
∇
(
U + U I

)
· ∇ũ(r̃) +∇

(
U + U

I
)
· ∇ũ(r̃)

]
rr̂ dθ. (14)

As mentioned at the beginning of this section, the reduced space approach is employed,

and hence the variations in state Ũ and adjoint ũ can not be arbitrary. Instead, by

forcing the first variations of S (r, U) and T (r, U, e) to vanish, Ũ is the solution of the

so-called incremental forward equation:∫
Ω

û
(
∇2Ũ + k2Ũ

)
dΩ +

∫
Γs

∂û

∂n

[
Ũ +

∂
(
U + U I

)
∂er

r̃

]
ds

−
∫

Γ∞

û

(
∂Ũ

∂r
− ikŨ

)
ds = 0, ∀û, (15)

and ũ is the solution of the incremental adjoint equation:∫
Ω

Û
(
∇2ũ+ k2ũ+KŨ

)
dΩ +

∫
Γs

∂Û

∂n

[
ũ+

∂u

∂er
r̃

]
ds

−
∫

Γ∞

Û

(
∂ũ

∂r
+ ikũ

)
ds = 0, ∀Û . (16)

The corresponding strong form of the incremental forward equation reads

∇2Ũ + k2Ũ = 0 in Ω, (17a)

Ũ = −
∂
(
U + U I

)
∂er

r̃ on Γs, (17b)

lim
r→∞

√
r

(
∂Ũ

∂r
− ikŨ

)
= 0. (17c)
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Similarly, the incremental adjoint equation in the strong form is

∇2ũ+ k2ũ = −KŨ in Ω, (18a)

ũ = − ∂u

∂er
r̃ on Γs, (18b)

lim
r→∞

√
r

(
∂ũ

∂r
+ ikũ

)
= 0. (18c)

Unlike the speed method [16], the Banach space setting always guarantees the

symmetry of the shape Hessian due to the standard result on symmetry of mixed

derivatives in differential calculus [17, 14]. The symmetry of the shape Hessian in (14)

is hidden in the last two terms. Our next step is to rewrite them into a form where

the symmetry is apparent. In order to do this, we choose r̃ = r̂ and û = ũ(r̃) in the

incremental forward equation (15). For the incremental adjoint equation (16), we take

Û = Ũ(r̂). Then, subtracting the forward equation from the adjoint equation, after

some simple integration by parts, gives∫
Γs

∂
(
U + U I

)
∂er

∂ũ(r̃)

∂n
r̂ ds =

∫
Γs

∂Ũ(r̂)

∂n

∂u

∂er
r̃ ds+

∫
Ω

KŨ(r̂)Ũ(r̃) dΩ. (19)

Moreover, on Γs, we have the following trivial identities,

U + U I = 0 ⇒ ∇
(
U + U I

)
=

∂(U+UI)
∂n

n,

u = 0 ⇒ ∇u = ∂u
∂n
n,

er · n = − r√
r2+r(1)2

⇒ ∂(U+UI)
∂er

= −∂(U+UI)
∂n

r√
r2+r(1)2

,

⇒ ∂u
∂er

= − ∂u
∂n

r√
r2+r(1)2

.

Thus, (19) becomes

−
∫ 2π

0

∂
(
U + U I

)
∂n

∂ũ(r̃)

∂n
rr̂ dθ = −

∫ 2π

0

∂Ũ(r̂)

∂n

∂u

∂n
rr̃ dθ +

∫
Ω

KŨ(r̂)Ũ(r̃) dΩ. (20)

Finally, combining equations (20) and (14) gives the symmetric form of the shape
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Hessian

D2J (r; r̂, r̃) =

∫
Ω

K
[
Ũ(r̂)Ũ(r̃) + Ũ(r̃)Ũ(r̂)

]
dΩ︸ ︷︷ ︸

H1(r;r̂,r̃)

−
∫ 2π

0

[
∂Ũ(r̂)

∂n

∂u

∂n
+
∂Ũ(r̂)

∂n

∂u

∂n

]
rr̃ dθ︸ ︷︷ ︸

H2(r;r̂,r̃)

−
∫ 2π

0

[
∂Ũ(r̃)

∂n

∂u

∂n
+
∂Ũ(r̃)

∂n

∂u

∂n

]
rr̂ dθ︸ ︷︷ ︸

H2(r;r̃,r̂)

−
∫ 2π

0

∂ (U + U I
)

∂n

∂u

∂n
+
∂
(
U + U

I
)

∂n

∂u

∂n

 r̂r̃ dθ
︸ ︷︷ ︸

H3(r;r̂,r̃)

−
∫ 2π

0

∂
[
∇
(
U + U I

)
· ∇u+∇

(
U + U

I
)
· ∇u

]
∂er

rr̂r̃ dθ︸ ︷︷ ︸
H4(r;r̂,r̃)

. (21)

5. Regularity of the forward and adjoint solutions

In this section we are going to justify what we have done in Section 4 by studying the

well-posedness of the forward and adjoint equations, and the regularity of their solutions.

We will assume that the scatterer’s surface Γs is sufficiently smooth so that the forward

and adjoint solutions can be shown to be classical using an integral equation method.

First we introduce the standard surface potentials [11, 18],

Sϕ(x) = 2

∫
Γs

Φ(x,y)ϕ(y) ds(y), x ∈ Γs, (22a)

Dϕ(x) = 2

∫
Γs

∂Φ(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ Γs, (22b)

D∗ϕ(x) = 2

∫
Γs

∂Φ(x,y)

∂n(x)
ϕ(y) ds(y), x ∈ Γs, (22c)

Tϕ(x) = 2
∂

∂n(x)

∫
Γs

∂Φ(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ Γs, (22d)

where Φ is the zero order Hankel function of the first kind for the (incremental) forward

equation(s), namely,

Φ(x,y) =
i

4
H1

0 (x− y) ,

and the zero order Hankel function of the second kind for the (incremental) adjoint
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solution(s), i.e.,

Φ(x,y) = − i
4
H2

0 (x− y) = − i
4
H1

0 (x− y) .

Our analysis needs the following useful result due to Kirsch [19, 20].

Lemma. 2 Let m ∈ N ∪ {0} and α ∈ (0, 1]. Then

i) Let Γs ∈ Cm+1,α if m ≥ 1, and Γs ∈ C2 if m = 0, then:

• S and D map Cm,α(Γs) continuously into Cm+1,α(Γs).

• T maps Cm+1,α(Γs) continuously into Cm,α(Γs).

ii) Let Γs ∈ Cm+2,α, then D∗ maps Cm,α(Γs) continuously into Cm+1,α(Γs).

Proof. See Kirsch [20] for the proof.

Note that Cm,α(Γs), provided Γs ∈ Cm,α, denotes the space of m-times differentiable

functions whose mth derivative is Hölder continuous with exponent α on Γs. If Γs is

parametrized as in (4), where r ∈ Cm,α([0, 2π]), we define Cm,α(Γs) as the space of all

functions ϕ such that ϕ (r) ∈ Cm,α([0, 2π]). The following corollary follows immediately

from the preceding Lemma.

Corollary 1 Let m ∈ N ∪ {0} and α ∈ (0, 1]. Suppose Γs ∈ Cm+1,α if m ≥ 1, and

Γs ∈ C2 if m = 0, then S and D are compact in both Cm,α(Γs) and Cm+1,α(Γs).

Proof. The proof is trivial by the following two facts:

i) For Γs ∈ C0,1 and i < j, the embedding from Cj,α into Ci,α is compact [21].

ii) For continuous linear operators L : X → Y and M : Y → Z, the operator ML is

compact if either L or M is compact [22].

Now it is obvious that S is compact in Cm,α(Γs) since it maps Cm,α(Γs) continuously into

Cm+1,α(Γs) and the continuous embedding from Cm+1,α(Γs) into Cm,α(Γs) is compact.

The proofs for other cases are similar.

A standard approach for solving the (incremental) forward equation(s) using

integral equation methods is to look for solution as the combination of the single and

double potentials

v(x) = D̃ϕ(x)− iS̃ϕ(x), x ∈ R2 \ Γs, (23)

where

S̃ϕ(x) =

∫
Γs

Φ(x,y)ϕ(y) ds(y), x ∈ R2 \ Γs, (24)

D̃ϕ(x) =

∫
Γs

∂Φ(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ R2 \ Γs. (25)

The following extension properties of S̃ and D̃ determine the regularity of the

forward and adjoint solutions.

Lemma. 3 Assume m ∈ N ∪ {0} and α ∈ (0, 1]. Let Γs ∈ Cm+1,α if m ≥ 1, and

Γs ∈ C2 if m = 0. Then
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i) S̃ maps Cm,α(Γs) continuously into Cm+1,α (R2 \ Ωs).

ii) D̃ maps Cm+1,α(Γs) continuously into Cm+1,α (R2 \ Ωs).

Proof. We proceed by induction. The proof for m = 0 is done in [18] (Theorems

2.17 and 2.23). Now assume that the assertions are true for m − 1 and we need to

show that they hold for m as well. We begin by the following important identities:

∀x ∈ R2 \ ks,

∇xS̃ϕ(x) =

∫
Γs

∇xΦ(x,y)ϕ(y) ds(y) = S̃

[
∂ (ϕτ )

∂s

]
− D̃ (ϕn) , (26)

and

∇xD̃ϕ(x) =

∫
Γs

∇x
∂Φ(x,y)

∂n(y)
ϕ(y) ds(y) = k2S̃ (ϕn) + ∇̃xS̃ (∇ϕ · τ ) , (27)

where we have defined the tangent vector τ = dy
ds

and ∇̃xϕ =
(
∂ϕ
∂x2
,− ∂ϕ

∂x1

)
. We

now give the proof for (26) and leave (27) for the readers as an exercise. Using

∇xΦ(x,y) = −∇yΦ(x,y), we have

∇xS̃ϕ = −
∫

Γs

[∇yΦ (x,y) · τ (y)]︸ ︷︷ ︸
∂Φ(x,y)
∂s(y)

ϕ (y) τ (y) ds(y)−
∫

Γs

∂Φ (x,y)

∂n (y)
ϕ (y)n (y) ds(y).

A simple integration by parts yields∫
Γs

∂Φ (x,y)

∂s (y)
ϕ (y) τ (y) ds(y) = −

∫
Γs

Φ (x,y)
∂ [ϕ (y) τ (y)]

∂s (y)
ds(y),

and this completes the proof of (26). Equation (26) shows that ∇xS̃ϕ(x) maps Cm,α(Γs)

continuously into Cm,α (R2 \ Ωs) by the induction hypothesis for m − 1. This implies

that S̃ϕ(x) maps Cm,α(Γs) continuously into Cm+1,α (R2 \ Ωs). The argument for the

second assertion follows similarly.

The ansatz (23) automatically satisfies the Helmholtz equation and the radiation

condition, and hence v is analytic in R2 \ Γs. What remains is to determine ϕ that

satisfies the boundary condition on the scatterer surface. Thus, the boundary condition

determines the space for ϕ, which in turn suggests the correct space for the solution

v by Lemma 3. Now, by letting x approach a point on Γs, provided that ϕ ∈ C(Γs),

and using the standard limiting values on the boundary Γs for the single and double

potentials [18, 11], the trace of the solution on Γs can be written as

2v(x) = (ϕ+Dϕ− iSϕ) (x), x ∈ Γs. (28)

The regularity of the forward and incremental forward solutions is now presented.

Theorem 1 Assume m ∈ N ∪ {0} and α ∈ (0, 1]. Let Γs ∈ Cm+1,α if m ≥ 1, and

Γs ∈ C2 if m = 0. There hold:
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i) The forward equation (3) is well-posed, in particular, U ∈ Cm+1,α (R2 \ Ωs), and

the trace U |Γs ∈ Cm+1,α(Γs). Both U and U |Γs depend continuously on U I
∣∣
Γs

in

the Cm+1,α-norm.

ii) The incremental forward equation (17) is well-posed, in particular, Ũ ∈
Cm,α (R2 \ Ωs), and the trace Ũ |Γs ∈ Cm,α(Γs). Both Ũ and Ũ

∣∣∣
Γs

depend

continuously on
∂(U+UI)

∂er
r̃

∣∣∣∣
Γs

in the Cm,α-norm.

Proof.

i) Equations (28) and (3b) allow us to write

(ϕ+Dϕ− iSϕ) (x) = −2U I |Γs (x) , x ∈ Γs. (29)

Now, U I |Γs ∈ Cm+1,α(Γs) because the restriction of an analytic function on a

curve is as smooth as the curve is. By the compactness of S and D in Cm+1,α

from Corollary 1 and the injectivity of I + D − iS from [11], the Riesz-Fredholm

theory [18] tells us that (29) is well-posed in the sense of Hadamard [23], namely,

I +D− iS : Cm+1,α(Γs)→ Cm+1,α(Γs) is bijective and its inverse (I +D − iS)−1 :

Cm+1,α(Γs) → Cm+1,α(Γs) is bounded. As a result, ϕ ∈ Cm+1,α(Γs), and hence

U ∈ Cm+1,α (R2 \ Ωs) by Lemma 3. Moreover, U |Γs ∈ Cm+1,α(Γs) depends

continuously on −U I |Γs in the Cm+1,α-norm. It follows that U depends continuously

on −U I |Γs as well.

ii) The proof, which is completely analogous to item i), is clear from the incremental

forward boundary condition (17b) and from the result of item i).

For the adjoint equations, we first state their representation formulas.

Proposition 1 The solution(s) of the (incremental) adjoint equation(s) can be

represented as

v(x) =

∫
Γs

[
v(y)

∂Φ(x,y)

∂n(y)
− Φ(x,y)

∂v(y)

∂n(y)

]
ds(y)

−
∫

Ω

K̂(y)Φ(x,y) dΩ, x ∈ R2, (30)

where

K̂(y) =

{
K(y)

[
U(y)− U obs(y)

]
for adjoint equation (9)

K(y)Ũ(y) for incremental adjoint equation (18)
(31)

Proof. It is easy by following the proof of the representation theorem for the forward

equation [11] and noting that the appearance of the last term is due to the inhomogeneity

of the (incremental) adjoint equation(s).
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Proposition 1 suggests that one should look for (incremental) adjoint solution(s) of

the form

v(x) =

∫
Γs

[
∂Φ(x,y)

∂n(y)
− iΦ(x,y)

]
ϕ(y) ds(y)

−
∫

Ω

K̂(y)Φ(x,y) dΩ, x ∈ R2. (32)

We are now in the position to address the regularity of the adjoint solutions.

Theorem 2 Assume m ∈ N ∪ {0} and α ∈ (0, 1]. Let Γs ∈ Cm+1,α if m ≥ 1, and

Γs ∈ C2 if m = 0. Then, there hold:

i) The adjoint equation (9) is well-posed, in particular, u ∈ Cm+1,α (R2 \ (ks ∪ Γb)),

and the trace u|Γs ∈ Cm+1,α(Γs).

ii) The incremental adjoint equation (18) is well-posed, in particular, ũ ∈
Cm,α (R2 \ (ks ∪ Γb)), and in particular, the trace ũ|Γs ∈ Cm,α(Γs).

Proof. Denote

g(x) =

∫
Ω

K̂(y)Φ(x,y) dΩ, x ∈ R2, (33)

then g satisfies the Helmholtz equation, and hence analytic, in R2 \ Γb. It follows that

the restriction of g on Γs, namely g|Γs , belongs to Cm+1,α(Γs).

i) On the scatterer’s surface, again by the standard limiting values of single and double

potentials on the boundary Γs, we have

ϕ+Dϕ− iSϕ = 2g|Γs . (34)

As in the proof of Theorem 1, we conclude that u ∈ Cm+1,α (R2 \ Ωs) and

u|Γs ∈ Cm+1,α(Γs).

ii) The result is clear from the incremental adjoint boundary condition (18b) and from

the result of item i).

Let us now justify the findings in Section 4 in the following theorem.

Theorem 3 Let m ∈ N ∪ {0} and α ∈ (0, 1]. Suppose Γs ∈ Cm+1,α if m ≥ 1, and Γs ∈
C2 if m = 0. Then the cost functional (2) is twice Gâteaux differentiable. Furthermore,

if m ≥ 1, then the cost functional is twice continuously Fréchet differentiable. The shape

gradient and shape Hessian are well defined and given in (11) and (21), respectively.

Proof. It is sufficient to consider two cases: m = 0 and m = 1. By Theorems 1 and

2, if m = 0, one has,

U ∈ C1,1
(
R2 \ Ωs

)
, u ∈ C1,1

(
R2 \ (Ωs ∪ Γb)

)
,

Ũ ∈ C0,1
(
R2 \ Ωs

)
, ũ ∈ C0,1

(
R2 \ (Ωs ∪ Γb)

)
,
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where we have taken α = 1. This means all derivatives in the shape gradient (11) and

shape Hessian (21) exist almost everywhere, and hence are well defined. Furthermore,

if m = 1, and hence Γs ∈ C2,α, Theorems 1 and 2 additionally imply that they are

continuous with respect to r. A similar argument as in the proof of Lemma 1 shows

that the cost is twice continuously Fréchet differentiable.

6. Shape Hessian analysis in Hölder spaces

In this section we use regularity results developed in Section 5 to study the shape

Hessian. For concreteness, we restricted ourselves to two exemplary cases of the

observation operator, namely, the observation is everywhere on a closed curved Γb
surrounding the obstacle (we call this case as continuous observation) and pointwise

observation Γb =
{
xobsj
}Nobs

j=1
. Unless otherwise stated, we assume Γs ∈ Cm+1,α, m ≥ 1,.

We begin by studying the first component of the shape Hessian, i.e., H1(r), which can

be shown to be the Gauss-Newton part of the full Hessian.

If Γb ∈ Cn,α, n ∈ N ∪ {0}, the proof of Theorem 1 implies that the trace of

the incremental forward solution on Γb can be identified with the following operator

composition:

Ũ |Γb : Cm+1,α(Γs) 3 r̂ 7→ Ũ(r̂) = (D◦ − iS◦) (I +D − iS)−1M1r̂ ∈ Cn,α(Γb),

where

M1 : Cm+1,α(Γs) 3 dr 7→M1dr = −
∂
(
U + U I

)
∂er

dr ∈ Cm,α(Γs),

and

S◦ϕ(x) = 2

∫
Γs

Φ(x,y)ϕ(y) ds(y), x ∈ Γb,

D◦ϕ(x) = 2

∫
Γs

∂Φ(x,y)

∂n(y)
ϕ(y) ds(y), x ∈ Γb.

Unlike S and D, S◦ and D◦ have non-singular kernels. In fact, they are analytic in both

x and y owing to x ∈ Γb, y ∈ Γs, and Γb ∩ Γs = ∅. As an immediate consequence,

all the properties of S and D apply to S◦ and D◦ as well. In particular, the following

stronger result holds.

Lemma. 4 Let Γs ∈ Cm+1,α and Γb ∈ Cn,α, then S◦ and D◦ are linear, bounded, and

compact maps from Cm+1,α(Γs) to Cn,α(Γb) for all n ∈ N ∪ {0} and α ∈ (0, 1].

Proof. We rewrite S◦ and D◦ as

S◦ϕ(x) = 2

∫ 2π

0

Φ
(
r̂
(
θ̂
)
, r (θ)

)
ϕ(θ)

√
r(θ)2 + [r(1)(θ)]

2
dθ, θ ∈ [0, 2π]

D◦ϕ(x) = 2

∫ 2π

0

∂Φ
(
r̂
(
θ̂
)
, r (θ)

)
∂n(θ)

ϕ(θ)

√
r(θ)2 + [r(1)(θ)]

2
dθ, θ ∈ [0, 2π],
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where x = r̂(θ̂)er̂ with r̂(θ̂) ∈ Cn,α [0, 2π], and y = r(θ)er with r (θ) ∈ Cm+1,α [0, 2π].

Now it can be observed that differentiation in θ̂ can be interchanged with integration

in θ due to the non-singularity and analyticity of the kernels. Moreover, since

Φ (·, r (θ)) ∈ Cn,α [0, 2π], we have

‖S◦ϕ‖Cn,α ≤ 4π ‖Φ(·, r (θ))‖Cn,α
∥∥∥∥√r(θ)2 + [r(1)(θ)]

2

∥∥∥∥
∞
‖ϕ‖∞ , ∀n.

A similar result holds for D◦, and this ends the proof for the first assertion. The second

assertion is simply a direct consequence of the first assertion and the proof of Corollary

1.

Now, it is easy to see that M1 is continuous due to Lemma 5 (to be stated and

proved momentarily), and this implies the compactness of Ũ |Γb owing to the continuity of

(I +D − iS)−1 and compactness of (D◦ − iS◦). Using the definition of adjoint operator,

H1(r; r̂, r̃) can be written as

H1(r; r̂, r̃) = 2R
(
Ũ |Γb(r̂), Ũ |Γb(r̃)

)
L2(Γb)

= 2R
(
Ũ |∗ΓbŨ |Γb(r̂), r̃

)
L2(Γs)

,

where R denotes the real operator which returns the real part of its argument, and

(·)∗ denotes the adjoint operator. Now the compactness of Ũ |Γb and Ũ |∗Γb implies the

compactness of H1(r).

We have proved the compactness of H1(r) for continuous observation. An

immediate question needs to be addressed is whether the same conclusion holds true for

pointwise observation as well. The incremental forward solution evaluated at xobsj reads

Ũ
(
r̂,xobsj

)
=

∫
Γs

2

[
∂Φ(xobsj ,y)

∂n(y)
− iΦ(xobsj ,y)ϕ(y)

]
︸ ︷︷ ︸

Φ̃j(y)

(I +D − iS)−1M1r̂ ds(y)

=

M∗
1

[
(I +D − iS)−1]∗︸ ︷︷ ︸

N

Φ̃j, r̂


L2(Γs)

.

Therefore H1(r; r̂, r̃) becomes

H1(r)[r̂, r̃] = 2R
Nobs∑
j=1

Ũ
(
r̂,xobsj

)
Ũ
(
r̃,xobsj

)

= 2R


Nobs∑

j=1

N Φ̃jN Φ̃j, r̂


L2(Γs)

, r̃


L2(Γs)

, (35)

where N is the complex conjugate of N , i.e., Nϕ = Nϕ. Equation (35) shows that the

dimension of the range of H1(r) is at most N obs. The compactness of H1(r) then follows

immediately. Thus, we have proved the following result on the compactness of H1 (r)

for both continuous and pointwise observations.
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Theorem 4 The Gauss-Newton component of the Hessian operator, H1(r), as a

continuous bilinear form on Cm+1,α(Γs)× Cm+1,α(Γs), is a compact operator.

In order to study the second component of the shape Hessian, i.e., H2 (r), we

identify the normal derivative of the incremental forward solution with the following

operator composition:

∂Ũ

∂n

∣∣∣∣∣
Γs

: Cm,α(Γs)→ Cm−1,α(Γs),

M1r̂ 7→
∂Ũ(M1r̂)

∂n
= (iI − iD∗ + T ) (I +D − iS)−1M1r̂

for M1r̂ ∈ Cm,α(Γs). This is known as the Dirichlet-to-Neumann (DtN) map [11].

Proposition 2 The DtN map is one-to-one and onto from Cm,α(Γs) to Cm−1,α(Γs),

and its inverse is continuous.

Proof. The proof that DtN map is bijective with bounded inverse from C1,α(Γs)

to C0,α(Γs) is given in [11]. The extension of the proof to the case of mapping from

Cm,α(Γs) to Cm−1,α(Γs) is straightforward with the help of Corollary 1, Lemma 3, and

hence we omit the details here.

We next prove the following simple lemma.

Lemma. 5 Let u, v ∈ Cm,α([0, 2π]) and m ∈ N ∪ {0}, there hold

i) uv ∈ Cm,α([0, 2π]) and ‖uv‖Cm,α ≤ ‖u‖Cm,α ‖v‖Cm,α
ii) If min[0,2π] |u| > ε > 0, then 1

u
∈ Cm,α([0, 2π])

Proof.

i) It is easy to see that if u, v ∈ C0,α([0, 2π]) then

‖uv‖C0,α ≤ ‖u‖C0,α ‖v‖C0,α ,

which in turn implies uv ∈ C0,α([0, 2π]) [24]. Now u, v ∈ Cm,α([0, 2π]) implies

u(j), v(j) ∈ C0,α([0, 2π]),∀j ≤ m. The proof is now complete by observing that

(uv)(k) with k ≤ m, only involve products of the type u(j)v(i) with i ≤ k, j ≤ k, and

that the product ‖u‖Cm,α ‖v‖Cm,α has more terms than ‖uv‖Cm,α .

ii) Let w = 1/u then l ≤ |w| ≤ L where 1/l = max[0,2π] |u| and 1/L = min[0,2π] |u|. It

is trivial to show that w ∈ C0,α([0, 2π]). Now observe that w(k) for k ≤ m, only

involve products of three terms w, u(j), and u(i) for j ≤ k, i ≤ k, and this ends the

proof.

It is convenient to denote

ζ1 = −
∂
(
U + U I

)
∂er

∈ Cm,α(Γs), ζ2 =
∂u

∂n
∈ Cm,α(Γs).

If either ζ1 or ζ2 is zero almost everywhere, then H2(r) = 0, and hence it will not

contribute to the full Hessian. On the other hand, if this does not happen, then the

following result on H2(r) holds.
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Theorem 5 Assume minΓs |ζ1| > ε1 > 0,min Γs |ζ2| > ε2 > 0, then H2(r), as a

continuous bilinear form on Cm,α(Γs)× Cm,α(Γs), is not compact.

Proof. The bilinearity and continuity are trivial by the definition of H2 (r) in (21)

and the property of the DtN map in Proposition 2. Now, due to the assumptions on ζ1

and ζ2, it is obvious to see that both

M1 : Cm,α(Γs) 3 dr 7→M1dr = ζ1dr ∈ Cm,α(Γs), (36)

and

M2 : Cm,α(Γs) 3 dr 7→M2dr = ζ2rdr ∈ Cm,α(Γs), (37)

are bijective and have bounded inverses due to Lemma 5. On the other hand, the

operator H2(r) acting on r̂ and r̃ can be written as

H2 (r; r̂, r̃) = 2R

(
M∗

1

∂Ũ

∂n

∗

(M2r̂) +M2
∂Ũ

∂n
(M1r̂) , r̃

)
L2(Γs)

. (38)

As can be observed, both terms in the first argument of the L2−inner product in (38) are

a composition of three bijective operators with bounded inverses, and they are adjoint

of each other. As a result, H2(r) is bijective with bounded inverse, and hence is not a

compact operator.

In order to study H3(r) and H4(r), it is convenient to denote

ζ3 =
∂
(
U + U I

)
∂n

∂u

∂n
∈ Cm,α(Γs), ζ4 =

∂
[
∇
(
U + U I

)
· ∇u

]
∂er

r ∈ Cm−1,α(Γs),

where we have used Lemma 5 to conclude that ζ3 ∈ Cm,α(Γs) and ζ4 ∈ Cm−1,α(Γs). If

ζ3 and ζ4 are zero almost everywhere on Γs, then H3(r) = 0 and H4(r) = 0, and hence

they have no contributions in the full Hessian. On the other hand, if H3 and H4 are not

trivial, then their mapping properties are given in the following theorem.

Theorem 6 H3(r) and H4(r), as continuous bilinear forms on C(Γs)×C(Γs), are not

compact. If, in addition, minΓs |ζ3| > ε3 > 0 and minΓs |ζ4| > ε4 > 0, then H3(r) and

H4(r) are not compact in Cm,α(Γs) and Cm−1,α(Γs), respectively.

Proof. The fact that H3(r) and H4(r) are bilinear and continuous is trivial. On the

other hand, their action on r̂, r̃ can be written as

H3 (r; r̂, r̃) = 2R

(
∂
(
U + U I

)
∂n

∂u

∂n
r̂, r̃

)
L2(Γs)

, (39)

H4 (r; r̂, r̃) = 2R

(
∂
[
∇
(
U + U I

)
· ∇u

]
∂er

rr̂, r̃

)
L2(Γs)

. (40)
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The first arguments of the L2-inner products in (39) and (40) are multiplication

operators on C(Γs), and hence H3 and H4 are not compact due to a result in [25].

Moreover, if minΓs |ζ3| > ε3 > 0 and minΓs |ζ4| > ε4 > 0, Lemma 5 tells us

that H3(r) and H4(r) are invertible multiplication operators with bounded inverse in

Cm,α(Γs) and Cm−1,α(Γs), respectively. Consequently, they are not compact.

remark 1 If m = 0, and hence Γs ∈ C2, results for H1 (r) and H3 (r) still hold, but not

for H2 (r) and H4 (r). It is not clear to us whether the DtN map is still continuously

invertible in this case. Nevertheless, if α = 1, H4 (r) is a multiplication operator in

Lp(0, 2π), 1 ≤ p <∞, and hence not compact in Lp (0, 2π) [26].

7. Shape Hessian analysis in Sobolev spaces

The (non-)compactness of the shape Hessian components in Section 6 has been carried

out in Hölder spaces. This is natural due to our regularity study in Section 5. In this

section, we briefly show that it is possible to extend most of the results to a Sobolev

space setting. To the end of this section we conventionally use C2,1 for m = {0, 1} in

the expression Cm+1,1.

We first recall some important mapping properties of surface potentials in Sobolev

spaces [19].

Lemma. 6 Let s ∈ R, s ≥ −1/2, and m be the smallest integer greater or equal |s|.
i) Let Γs ∈ Cm+1,1. Then

• S and D map Hs(Γs) continuously into Hs+1(Γs)

• T maps Hs+1(Γs) continuously into Hs(Γs)

ii) Let Γs ∈ Cm+2,1, then D∗ maps Hs(Γs) continuously into Hs+1(Γs).

The following compactness result, analogous to Corollary 1, is a direct consequence of

Lemma 6 and Rellich theorem on compact embeddings of Sobolev spaces [24, 27].

Corollary 2 Let s ∈ R, s ≥ −1/2, and m be the smallest integer greater or equal |s|,
and Γs ∈ Cm+1,1. Then, S and D are compact in both Hs(Γs) and Hs+1(Γs).

Thus, the Riesz-Fredholm theory still holds to deduce that (I +D − iS) is bijective

with continuous inverse in both Hs(Γs) and Hs+1(Γs), since (I +D − iS) is injective in

L2 (Γs) [19].

A result similar to Lemma 4 reads as follows.

Lemma. 7 Let s, t ∈ R, s ≥ −1/2, m be the smallest integer greater or equal |s|, and

n be the smallest integer greater or equal |t|. Suppose Γb ∈ Cn,1 and Γs ∈ Cm+1,1. Then

S◦ and D◦ are linear, bounded, and compact maps from Hs([0, 2π]) to H t([0, 2π]) for all

s, t ∈ R, s ≥ −1/2.

Proof. We present a proof for S◦ using the Sobolev space theory for periodic

functions developed in Kress [24], and the proof for D◦ follows similarly. Denote

Φ̃
(
θ̂, θ
)

= Φ
(
r̂
(
θ̂
)
, r (θ)

)√
r2(θ) + [r(1)(θ)]

2
,
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then, we immediately have Φ̃(θ̂, θ) ∈ Cn,1 [0, 2π]×Cn,1 [0, 2π]. As a result, Φ̃(θ̂, θ) admits

a Fourier series, i.e.,

Φ̃(θ̂, θ) =
∑
k

∑
j

cj,ke
ijθ̂eikθ,

and its Fourier coefficients decays faster than n-order polynomials in j and than m-order

polynomials in k, i.e., ∑
j,k

j2n |cj,k|2 <∞, ,
∑
j,k

k2m |cj,k|2 <∞. (41)

Let us denote dk = 1
2π

∫ 2π

0
ϕ(θ̂)eikθ̂ dθ̂, then we have

S◦ϕ = 4π
∑
j

(∑
k

cj,kdk

)
︸ ︷︷ ︸

Tj

eijθ.

Next using Cauchy-Schwarz inequality and (41), the linearity and boundedness of S◦

are readily available such as

‖S◦ϕ‖2
Ht = (4π)2

∑
j

(
1 + j2

)t |Tj|2 ≤ (4π)2

(∑
j,k

(1 + j2)
t |cj,k|2

(1 + k2)s′

)
︸ ︷︷ ︸

<∞

(∑
k

(1 + k2)s
′ |dk|2

)
︸ ︷︷ ︸

‖ϕ‖2
Hs
′

,

where −1 < s′ < −1/2. The second assertion follows immediately since the embedding

from Hs [0, 2π] to Hs′ [0, 2π] is compact [24, 27].

We next need the mapping properties of the potentials S̃ and D̃ to investigate the

DtN map. A result due to Kirsch [19], analogous to Lemma 3, states,

Lemma. 8 Let s ∈ R, s ≥ −1/2, and m be the smallest integer greater or equal |s|.

i) If Γs ∈ Cm+1,1, then S̃ can be extended to bounded linear operator from Hs (Γs)

into H
s+3/2
loc

(
Ω
)
.

ii) If Γs ∈ Cm,1, then D̃ can be extended to bounded linear operator from Hs (Γs) into

H
s+1/2
loc

(
Ω
)
.

Here comes an extension of the DtN map in Proposition 2 from Hölder spaces to

Sobolev spaces.

Proposition 3 Let s ∈ R, s ≥ −1/2, m be the smallest integer greater or equal |s|, and

Γs ∈ Cm+1,1. Then, the DtN map is bijective with continuous inverse from Hs (Γs) to

Hs−1 (Γs).

Proof. Using Corollary 2 and Lemma 8 instead of Corollary 1 and Lemma 3, the

proof follows the same line as the proof of Proposition 2.

We are now in the position to discuss our main results on the (non-)compactness

of each component of the full shape Hessian.
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Theorem 7 s ∈ R, s ≥ −1/2, m be the smallest integer greater or equal |s|, and

Γs ∈ Cm+1,1.

i) H1(r) is compact in Hs (Γs).

ii) Assume minΓs |ζ1| > ε1 > 0,min Γs |ζ2| > ε2 > 0, then H1(r) is bijective with

continuous inverse in Hs (Γs).

iii) Assume minΓs |ζ3| > ε3 > 0, then H3(r) is bijective with continuous inverse in

Hs (Γs).

iv) Assume minΓs |ζ4| > ε4 > 0, then H1(r) is bijective with continuous inverse in

Hs−1 (Γs).

Consequently, H2 (r), H3 (r), and H4 (r) are not compact.

Proof. With the above developments, the proofs of these assertions follow exactly

the same line as those of Theorems 4, 5, 6.

i) Theorem 1 and Lemma 5 imply that M1 is a continuous map in Hs (Γs). Since

(I +D − iS) is continuously invertible due to Corollary 2 and (D◦ − iS◦) is

compact due to Lemma 8, the compactness of H1 (r) follows for both continuous

and pointwise observations.

ii) With the assumptions minΓs |ζ1| > ε1 > 0 and min Γs |ζ2| > ε2 > 0, M1 and M2

are bijective with continuous inverse in Hs (Γs). Together with the continuous

invertibility of the DtN map, we conclude that H2 (r) is continuously invertible.

iii) Under the assumption minΓs |ζ3| > ε3 > 0, H3(r) is a bijective multiplication

operator with continuous inverse in Hs (Γs).

iv) Under the assumption minΓs |ζ4| > ε4 > 0, H4(r) is a bijective multiplication

operator with continuous inverse in Hs−1 (Γs).

8. Eigenvalues of the shape Hessian

We have showed that the Gauss-Newton component of the shape Hessian, namely,

H1 (r), is compact while others are not. This implies the ill-posedness of the inverse

problem (2)–(3c), which is now explained in more detail. Suppose we are solving the

inverse problem (2)–(3c) iteratively using a Newton method. As the iterated shape r

is sufficiently close to the optimal shape, all Hessian components are negligible except

H1 (r). That is, one has to invert H1 (r) in order to obtain the Newton steps. Due to

the compactness of H1 (r), solving for the Newton steps is an example of solving linear

equations of the first kind, which is ill-posed (e.g. [11]). The degree of ill-posedness

is reflected by the decay of the eigenvalues of H1 (r). If the eigenvalues decay slowly

to zero, the problem is called mildly ill-posed. If the decay is, however, very rapidly,

the problem is severely ill-posed [11]. This begs for a study on the decay rate of the
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eigenvalues of H1 (r). We begin by rewriting H1 (r) in terms of operator composition as

H1(r; r̂, r̃) = (42)

2R
(
M∗

1K
[
(D◦ − iS◦) (I +D − iS)−1]∗ (D◦ − iS◦) (I +D − iS)−1M1r̂, r̃

)
L2(Γs)

,

for continuous observation, and as

H1(r; r̂, r̃) = (43)

2R


Nobs∑

j=1

M∗
1

[
(I +D − iS)−1]∗ Φ̃jM

∗
1

[
(I +D − iS)−1]∗ Φ̃j, r̂


L2(Γs)

, r̃


L2(Γs)

,

for pointwise observation. We now have the following asymptotic result on the decay

rate for both continuous and pointwise observations.

Theorem 8 Assume m ∈ N ∪ {0} and α ∈ (0, 1]. Let Γs ∈ Cm+1,α if m ≥ 1, and

Γs ∈ C2 if m = 0. Then, the nth eigenvalues of H1 (r) asymptotically decay as

λ1,n = O

(
1

n2m+1+α

)
.

Proof. The fact that H1 (r) is Hermitian and semi-positive definite is clear from

(21). In fact, it is positive definite for the continuous observation due to the unique

continuation of solutions of the Helmholtz equation. By the analyticity of Φ (x,y),

M1 ∈ Cm,α(Γs), and
√
r2 + r′2 ∈ Cm,α(Γs), Equations (42) and (43) show that

H1 (r) ∈ Cm,α ([0, 2π]× [0, 2π]). Using the main theorem in [28] completes the proof.

remark 2 It is important to emphasize that the result in Theorem 8 is asymptotic, and

hence is only valid for sufficiently large n. The decay rate can be improved further if the

shape space and M1 are analytic. In that case, invoking a result in [29] one can conclude

that the decay rate is in fact exponential.

9. An analytical example

In this section we present an analytical example in which eigenvalues can be expressed

in terms of Bessel functions and eigenfunctions can be shown to be Fourier modes. Most

of the results are elementary but the proofs are long and tedious, so most of the details

are omitted to keep the length of the paper reasonable.

We first recall that the plane wave eikx in positive x-direction can be represented

as the superposition of an infinite number of cylindrical waves [30], i.e.,

eikx =
∞∑

N=−∞

iNJN(kr)eiNθ.

Next, we assume that the incident wave is one of such cylindrical waves, namely,

U ic = JN(kr)eiNθ, (44)
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which is an analytic function in R2. We further assume that the synthetic observation

data U obs, as the scattered field obtained from a circular scatterer of radius r = c, are

observed everywhere on a circle of radius r = b. Now, we would like to investigate the

shape Hessian evaluated at a circular scatterer of radius r = a < b.

For incident plane wave, analytical solution for circular scatterers is standard

[30], and one can adapt the derivation easily to obtain analytical solution for incident

cylindrical waves given by (44). In particular, the solution of the forward equation reads

U = − JN(ka)

H1
N(ka)

H1
N(kr)eiNθ,

from which the synthetic observation data follows, namely,

U obs = − JN(kc)

H1
N(kc)

H1
N(kr)eiNθ.

The total field is now readily available as

U + U ic =

[
JN(kr)− JN(ka)

H1
N(ka)

H1
N(kr)

]
︸ ︷︷ ︸

fN (kr)

eiNθ.

Similarly, the solution of the incremental forward equation can be shown to be

Ũ(r̃) =
∞∑

n=−∞

An(r̃)H1
n(kr)einθ,

where

An(r̃) =
CN(ka)

H1
n(ka)

1

π

∫ 2π

0

ei(N−n)θr̃(θ) dθ, and CN(ka) =
i

πaH1
N(ka)

.

By using a Green function approach, one can show that the analytical solution of the

adjoint equation is given by

u = BN

[
JN(kr)− JN(ka)

H2
N(ka)

H2
N(kr)

]
︸ ︷︷ ︸

gN (kr)

eiNθ,

where

BN = −πkb
2

[
JN(ka)

H1
N(ka)

− JN(kc)

H1
N(kc)

]
H1
N(kb)H2

N(kb).

The final step is to substitute these analytical solutions into the shape Hessian (21).

We begin with the Gauss-Newton component H1 (a). After some simple manipulations

we have

H1 (a) =
∞∑

n=−∞

λ1,nϕnN(θ)ϕnN(θ̂), (45)
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where

λ1,n =
b

2a2π4 |H1
N(ka)|2

|H1
n(kb)|2

|H1
n(ka)|2

, (46)

ϕnN(θ) =

{
cos (N − n) θ

sin (N − n) θ
. (47)

As can be seen, the eigenfunctions are Fourier modes. In order to understand the

eigenvalues we need the following asymptotic results for Bessel functions of large orders

[31], i.e., n� 1,

Jn(r) ≈ 1√
2πn

( er
2n

)n
, (48a)

Yn(r) ≈ 2√
πn

(
2n

er

)n
. (48b)

Since the first term on the right side of (46) does not depend on n, it can be omitted

without changing the asymptotic behaviour of the eigenvalues. Asymptotically, the

eigenvalues can now be estimated as

λ1,n ≈
[
Yn(kb)

Yn(ka)

]2

≈
(a
b

)2n

. (49)

Typically a� b, and (49) implies the exponential decay of λ1,n with respect to the index

n of the Fourier modes. For this example, it is straightforward to prove the compactness

in L2(0, 2π) of the Gauss-Newton component H1(a) without using the integral equation

method as in Sections 6 and 7.

Proposition 4 H1 (a) given by (45) is a compact operator in L2(0, 2π).

Proof. First, the series of eigenvalues converges by the root test. Second, if we form

a series of finite dimensional approximation to H1(a) as

H1M(θ, θ̂) =
M∑

n=−M

λ1,nϕnN(θ)ϕnN(θ̂), (50)

then H1M(θ, θ̂) is trivially linear and continuous from L2(0, 2π) to L2(0, 2π) by Cauchy-

Schwarz inequality and the convergence of the eigenvalue series. That is, H1M(θ, θ̂) is

compact. Finally, it can be shown that H1M(θ, θ̂) converges to H1(a) in the operator

norm as M approaches infinity, again using the convergence of the eigenvalue series.

Hence H1(a) is compact.

In Figure 1, we plot λ1,n against the index n in the linear-log scale. Straight

lines indicate exponential convergence to zero, in agreement with the estimation (49).

Rigorously, the exponential decay in (49) is valid only for large n and this is confirmed

for the case kb = 5000 in which the asymptotic curve is also plotted. Nevertheless, the

decay is very fast so that with kb = 10, for example, only 9 eigenvalues are sufficient



Shape Hessian Analysis for Inverse Acoustic Scattering 24

to represent the spectrum of H1(a) accurately since the rest of the spectrum are below

machine zero. Figure 1 also shows that as the observation location is further away from

the scatterer, i.e., the observation radius b is larger, the decay is faster, and hence the

number of significant eigenvalues is less. We shall come back to this point in the later

discussion.

Figure 1. Exponential decay of the eigenvalues of H1(a) for ka = 1. We show the

eigenvalue plots for four different values of observation radius, kb = {2, 10, 1000, 5000},
together with the asymptotic curve for kb = 5000.

For H2(a), simple algebra manipulations show that

H2(a) =
∞∑

n=−∞

λ2,nϕnN(θ)ϕnN(θ̂),

where

λ2,n =
ka

2π
R

[
CN(ka)

∂gN(ka)

∂r

H1
n−1(ka)−H1

n+1(ka)

H1
n(ka)

]
.

Ignoring all the terms independent of n and using the asymptotic formulas (48a)–(48b)

yield

λ2,n ≈
Yn−1(ka)− Yn+1(ka)

Yn(ka)
.

Now the following estimates

Yn+1(ka)

Yn−1(ka)
≈
(
n+ 1

n− 1

)n−3/2 [
2(n+ 1)

eka

]2

,

Yn+1(ka)

Yn(ka)
≈
(
n+ 1

n

)n−1/2 [
2(n+ 1)

eka

]
,

Yn−1(ka)

Yn(ka)
≈
(
n− 1

n

)n−3/2(
eka

2n

)
,
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imply that λ2,n grows with n. As a consequence, H2 is not compact since the growth of

λ2,n violates the necessary condition for a self-adjoint operator to be compact.

ForH3(a) andH4(a), it is transparent that they are not compact as follows. Similar

to H1(a) and H2(a), they can be written as

H3(a) =
∞∑

n=−∞

λ3,nϕn0(θ)ϕn0(θ̂), H4(a) =
∞∑

n=−∞

λ4,nϕn0(θ)ϕn0(θ̂),

where

λ3,n = 2πR

(
∂fN
∂r

∂gN
∂r

)
, λ4,n = 2πaR

∂
(
∂fN
∂r

∂gN
∂r

)
∂r

 .
As λ3,n and λ4,n are constants independent of n, they violate the necessary condition

for compactness of H3(a) and H4(a). As a result, H3(a) and H4(a) are not compact.

The above example is consistent with the theoretical results in Section 6 even

though only elementary analytical means are employed here instead of the sophisticated

integral equation method. We have shown that the shape Hessian is not compact for

non-optimal shapes. However, as a shape approaches an optimal one, the non-compact

parts of the shape Hessian, namely, H2(r),H3(r), and H4(r), converge to zero. In that

case, the shape Hessian, as a whole, converges to the compact part H1(r).

In this example, we have two parameters, namely, the incident wave number k, and

the observation radius b. It is then naturally to ask whether these two parameters can

affect the ill-posedness, that is, whether the problem is less or more ill-posed when these

parameters change is of our interest. For this purpose, we, to the end of this section,

consider only H1(a) and a fixed index n.

9.1. Increase the wave number k

From [31] we have the following asymptotic results as k approaches ∞,

Jn(kr) ≈
√

2

πkr
cos (kr − nπ/2− π/4) , (51a)

Yn(kr) ≈
√

2

πkr
sin (kr − nπ/2− π/4) . (51b)

The eigenvalues in (46) now asymptotically become

λ1,n ≈
k

4π3
, as k →∞. (52)

That is, the eigenvalues tend to be independent of the index n and grows linearly as

k increases. This in turns means that H1(a) tends to be a non-compact operator. In

other words, as k →∞, the problem of finding Newton steps is continuously invertible

in the vicinity of an optimal shape, and hence the ill-posedness due to the compactness
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of the Hessian is circumvented. However, increasing the wave number induces a different

kind of ill-posedness known as non-uniqueness of stationary shapes or multiple minima

phenomenon.

Again, the above result is asymptotic for all n, and we would like to know for

each n when the asymptotic behaviour is attained. Figure 2 shows λ1,n as a function

of k for n ∈ {10, 20, 30, 40}, k ∈ [1, 20], a = 1, b = 10, and N = 2. The

independence and increase of the index n as predicted by the asymptotic result (52)

are clearly demonstrated. As can be also seen, eigenvalues with larger indices (smaller

eigenvalues) need larger wave number to bring them to the asymptotic level. The

practical implication here is that while it might be “easier” to identify the scatterer with

larger wave number, low rank approximation to the H1(r) needs more work because the

number of dominant eigenvalues grows as k increases.

Figure 2. Variations of λ1,n for n = {10, 20, 30, 40} as k increases from 1 to 20. Other

parameters are a = 1, b = 10 and N = 2.

9.2. Increase the observation radius b

Now let us fix the incident wave number k and allow the observation radius b to vary.

The goal is to study the variation of eigenvalues λ1,n for a fixed index n. Ignoring all

constants independent of b and m and using the asymptotic formulas (51) and (48) yield

λ1,n ≈ b
∣∣H1

n(kb)
∣∣2 2

π |H1
n(ka)|2

≈ 2

π |H1
n(ka)|2

≈
√
n

π

(
eka

2n

)n
, b→∞, (53)

which decay much faster than those in equation (49) for a fixed but large n. This fact

can also be seen in Figure 1. We conclude that as the observation radius is larger, the

eigenvalues of the Hessian operator decay faster, and hence the problem of finding the

Newton steps is more ill-posed. In other words, the number of dominant eigenvalues is

less, which is advantageous for low rank approximation of the Gauss-Newton part. It can

also been observed in (53) that the eigenvalues become independent of the observation

radius b, for sufficiently large b.
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In Figure 3, we compute the exact eigenvalues n from equation (53) (ignoring

constants independent of b and n) for n ∈ {2, 5, 10} as kb varies from 2 to 20 and

ka = 1. The asymptotic value in (53) is confirmed and attained for small b.

Figure 3. Variations of λ1,n with n ∈ {2, 5, 10} as kb increases from 2 to 20 and

ka = 1. Also shown is the asymptotic value in (53) for n = 10.

9.3. On the assumption |ζ1| > ε1 > 0, |ζ2| > ε2 > 0

Finally we would like to check whether this assumption is satisfied in the above example.

Simple algebra manipulations show that

ζ1 =
−2i

πaH1
N(ka)

eiNθ, ζ2 =
−2iBN

πaH2
N(ka)

eiNθ,

that is, ζ2 is zero if kc and ka are zeros of the Bessel function of the first kind JN . But

this cannot happen because both U and U obs would be identically zero in that case.

Recall that the above example is for a cylindrical wave which is a part of the plane

wave. As numerically shown in the following, the assumption is also valid for an incident

plane wave for which ζ1 and ζ2 become

ζ1 =
∞∑

n=−∞

2in+1εN
πaH1

N(ka)
eiNθ, ζ2 =

∞∑
n=−∞

2in+1BNεN
πaH2

N(ka)
eiNθ.

Figure 4 plots ζ1 and ζ2 versus θ for the case of k = 1, a = 1, b = 10, c = 2. As can be

seen, |ζ1| > ε1 > 0 and |ζ2| > ε2 > 0.

10. Numerical results

In this section, we numerically compute the eigenvalues of the shape Hessian (21) to

validate our theoretical developments in Sections 6 and 7. We choose the Nyström

method [11] to discretize the integral equations (29) and (33). Since the normal

derivatives of the single and double potentials are required in the incremental forward
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Figure 4. ζ1 and ζ2 versus θ for the case of k = 1, a = 1, b = 10, c = 2.

and adjoint equations, we use the Nyström method of Kress [32] to treat hyper-singular

integrals properly.

We consider two shape spaces. The first shape space is analytic and is given by

Fourier basis functions:

r =
K∑
k=0

ak cos(kθ) + bk sin(kθ). (54)

The second shape space consisting of C3 shapes is constructed as follows. We use B-

spline to fit the above Fourier basis in the least squares sense and enforce periodic

boundary condition, i.e.,

r(j)(0) = r(j)(2π), j = 0, 1, 2, 3.

The Fourier basis functions are sampled sufficiently well so that the original and B-spline

fitting results look identical. The difference between the two shape spaces is therefore

on r(j) (θ) for j ≥ 1. Note that we choose C3 shape space since the Nyström methods

in [11, 32] require the third derivative.

For continuous observation, we choose to synthesize the data on the circle centered

at the origin with radius b = 10, and take unity incident wave number k = 1 unless

otherwise stated. For pointwise observation, the data is synthesized at 31 points equally

distributed in the interval y ∈ [−b, b] and at x = −b. For all examples, we use trapezoidal

rule with 240 points equally distributed in [0, 2π] as numerical quadrature. We are

interested in the following drop and kite shapes. The original drop shape reads

x = −2 sin(θ/2) + 1, y = sin(θ), t ∈ [0, 2π].
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However, the actual drop geometry used in our computations is shown in Figure 5(a); a

30-degree rotated version of the original one. Note that we have smoothed out the tip

of the drop so that it is a member of the analytic shape space. The kite shape, on the

other hand, is given by

x = cos(t) + 0.65 cos(2t)− 0.65, y = 1.5 sin(t), t ∈ [0, 2π],

whose geometry is shown in Figure 5(b).

(a) Drop shape geometry (b) Kite shape geometry

Figure 5. Shapes of interest: the drop and kite shapes.

In order to show the efficiency the Nyström method and to verify our

implementation we present a convergence result for the drop shape (a similar

convergence of the kite shape is tabulated in [11], and hence omitted here). In particular,

we are interested in computing the far field pattern:

U∞ (x̂) =
e−i

π
4

√
8π

∫
Γs

(n (y) · x̂ + 1) e−x̂·yϕ (y) ds(y), ‖x̂‖ = 1.

We choose x̂ = (1, 0) and show the real together with the imaginary parts of U∞, namely,

R (U∞) and I (U∞), versus the number of Nyström quadrature points #Nq in Table

1. As can be observed, the exponential convergence is clearly exhibited, and the result

suggests that using 240 quadrature points be enough.

Table 1. Convergence of the Nyström method for the drop geometry.

# Nq R (U∞) I (U∞)

120 -1.285454916526683 0.307119250858291

240 -1.285454865187779 0.307119279365475

480 -1.285454865187758 0.307119279365487

Our goal is to numerically examine the necessary condition for an operator to be

compact, namely, the convergence to zero of its eigenvalues. If the set of all eigenvalues
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has a positive lower bound (or negative upper bound), then the operator is not compact.

However, even in this case, it is impossible to study all the eigenvalues since they are

countably infinite. We will therefore resort to investigate a small dominant part of the

spectrum, from which we draw conclusions. To the rest of the this section, we “measure”

the degree of ill-posedness by the magnitude of eigenvalues. For example, given two ill-

posed inverse problems, i.e., the Hessian eigenvalues decay to zero, we say one problem

is more ill-posed than another if the eigenvalues of the former are smaller than those of

the latter at the same indices.

Figure 6 shows the eigenvalues of H1 (rdrop) for both continuous and pointwise

observations using the analytic shape space. The number of shape parameters is chosen

to be 2K − 1 ∈ {11, 21, 31, 41}. As can be seen, the numerical spectrum as a whole

converges rapidly and exhibits dimension-independent property. The spectrum for the

pointwise observation tends to converge faster than that of the continuous one. One can

also draw a similar conclusion for the convergence to zero of the eigenvalues. This is

intuitively consistent since the pointwise case is expected to be more ill-posed, i.e., the

decay rate to zero of the eigenvalues is faster. Moreover, the linear-log scale in Figure 6

shows the exponential decay to zero, agreeing with Remark 2.

(a) Continuous observation (b) Pointwise observation

Figure 6. Eigenvalues of H1 (rdrop) versus the number of shape parameters using

analytic shape space.

Similar to Figure 6, we plot λ1,n (rkite) versus the index n in Figure 7 for both

continuous and pointwise observations using the analytic shape space. Since the kite

shape is non-convex and has small features at the wing tips, the number of shape

parameters is expected to be large for the numerical spectrum to converge. This is

clearly demonstrated in Figure 7 in which we use 2K − 1 ∈ {21, 51, 101, 201} shape

parameters. Compared to Figure 6, five times more shape parameters are used, yet

the numerical spectrum does not seem to converge for continuous observation case,

especially for small eigenvalues. Since the pointwise observation case is more ill-posed,

the convergence is expected to be faster and this is confirmed in Figure 7(b). In either
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cases, the compactness of H1 (r) is clear from the exponential collapsing of eigenvalues

to zero on the linear-log scale.

(a) Continuous observation (b) Pointwise observation

Figure 7. Eigenvalues of H1 (rkite) versus the number of shape parameters using

analytic shape space.

It is of interest to see how the eigenvalues λ1,n behave in the less smooth C3

shape space using continuous observation (similar results are observed for the pointwise

observation case, but not presented here). Figure 8 shows that the eigenvalues decay

exponentially to machine zero for both the drop and kite geometries and for all number

of shape parameters under consideration. Note that this does not contradict Theorem

8. Instead it suggests that numerical dominant eigenvalues, captured by the shape space

under consideration, already converge to machine zero before we can see the asymptotic

result predicted by Theorem 8. It can be observed that, for both geometries, the

dominant numerical eigenvalues for C3 shape space in Figures 8(a) and 8(b) are almost

identical to those for analytic shape space in Figures 6(a) and 7(a). Since the B-splines

are piecewise polynomial, the result indicates that countable discontinuities in higher

order derivatives of shape basis functions have insignificant impact on the numerical

spectrum.

We next study the variation of λ1,n when the observation radius b increases. For

convenience, we choose the drop geometry and 41 shape parameters for the analytic

shape space. Figure 9(a) shows that for a fixed index n, the corresponding eigenvalue of

the continuous observation case decreases initially but then stays constant for sufficiently

large b, which is consistent with our analytical result in Section 9. For pointwise

measurement, however, the eigenvalues, shown in Figure 9(b), are observed to decrease

constantly as O
(

1
b

)
. This is expected since we loose a factor of b by changing from

continuous to pointwise observation as can be seen in (21).

Analogous to Section 9, we now study the variation of eigenvalues λ1,n when the

incident wave number k increases. Again, we choose the drop shape and 41 shape

parameters for the analytic shape space. Figure 10 shows that, for a fixed index n,
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(a) Drop geometry (b) Kite geometry

Figure 8. Eigenvalues of H1 (rdrop) and H1 (rkite) versus the number of shape

parameters using C3 shape space and continuous observation operator.

(a) Continuous observation (b) Pointwise observation

Figure 9. Variation of eigenvalues of H1 (rdrop) as the observation radius b increases

using analytic shape space.

the corresponding eigenvalue increases, in agreement with the result and discussion of

Section 9. That is, solving for Newton steps in the proximity of an optimal shape is less

ill-posed as the incident wave number increases.

To the end of this section, we will numerically study the eigenvalues of H2 (r) and

H3 (r) (H4 (r) is similar to H3 (r) and hence omitted). Since the results for continuous

and pointwise observations are similar, only the latter will be presented using the

analytic shape space. We synthesize observation data from the scattering field of a

unit circle centered at the origin, and evaluate the eigenvalues of H2 (r) and H3 (r)

at both the drop and the kite geometries. Figure 11 plots the numerical spectrum

of H2 (rdrop) and H2 (rkite) for various number of shape parameters. For all number

of shape parameters under consideration, the plots suggest the smallest eigenvalue of
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(a) Continuous observation (b) Pointwise observation

Figure 10. Variation of eigenvalues of H1 (rdrop) as the incident wave number k

increases using analytic shape space.

0.014 for the drop and 1.7 for the kite. As the number of shape parameters increases,

the numerical spectrum resolves more eigenvalues above the smallest eigenvalues. We

deduce that H2(r) is not compact, in agreement with our analytical results in Sections

6 and 7. This validation would be rigorous if we could check all the eigenvalues of H2,

but it is again an impossible task. Hence we have shown only the trend up to 201

eigenvalues.

(a) Drop geometry (b) Kite geometry

Figure 11. Eigenvalues of H2 (rdrop) and H2 (rkite) versus the number of shape

parameters using analytic shape space.

Figure 12 is similar to Figure 11, but now for H3. As can be seen, the numerical

results validate the non-compactness of H3 proved in Sections 6 and 7. Again, up to

201 shape parameters, the trend of having smallest eigenvalues of 0.004 for the drop

and 1.23 for the kite is clear.

It should be pointed out that, unlike the compact Gauss-Newton part, the spectrum
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(a) Drop geometry (b) Kite geometry

Figure 12. Eigenvalues of H3 (rdrop) and H3 (rkite) versus the number of shape

parameters using analytic shape space.

of the non-compact parts of the Hessian do not exhibit dimension-independent property.

11. Conclusions

We have presented a shape Hessian analysis for inverse acoustic shape scattering

problems. In either Hölder or Sobolev space settings, the shape Hessian is shown to

be symmetric and consists of four components, the Gauss-Newton part of which is a

compact operator while the others are not. The relationship between the decay rate

of the eigenvalues of the Gauss-Newton part and the smoothness of the shape space is

presented, which shows that the smoother the shape space is, the faster the decay rate.

At the heart of our analysis are the integral equation method, Riesz-Fredholm theory,

and compact embeddings in Hölder and Sobolev spaces. Analytical and numerical

examples are shown to be in agreement with our theoretical results. Ongoing research

is to extend our analysis to inverse shape electromagnetic and inverse medium acoustic

scattering problems [33, 34].
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Appendix

In the following, we provide necessary ingredients to extend our theoretical results to

three dimensional scattering problems. To begin, we again identify shapes with their

boundaries, but this time for both two and three dimensions in a unified manner. In

particular we assume that the scatterer ΩS  Rd for d = 2, 3 is a simply connected

domain and starlike with respect to the origin. Thus, its boundary ∂ΩS can be

parametrized as

∂ΩS ≡ Γs = {r = r(θ)er : θ ∈ S} ,

where

θ =

{
θ if d = 2

(θ, ψ) if d = 3
,

er =

{
[cos θ, sin θ]T if d = 2

[sin θ cosψ, sin θ sinψ, cos θ]T if d = 3
,

and

S =

{
[0, 2π] if d = 2

[0, π]× [0, 2π] if d = 3
.

The shape derivatives for the functional I in (6) can be shown to be

DI(r; r̂) = −
∫
S
frr̂ gdθ,

D2I(r; r̂, r̃) = −
∫
S

[
∂f

∂er
+ (d− 1)

f

r

]
rr̂r̃ gdθ,

where

g =

{
1 if d = 2

r sin θ if d = 3
.

The following useful identities are employed to derive shape gradient and Hessian:

er · n = − r
n
, and ds = gn dθ,

where

n =


√
r2 + (r(1))

2
if d = 2√

r2 +
(
r

(1)
θ

)2

+

(
r
(1)
ψ

sin θ

)2

if d = 3
,

where the subscripts θ and ψ denote partial derivatives with respect to θ and ψ,

respectively. The fundamental solution of the Helmholtz equation is now given by

Φ (x− y) =

{
i
4
H1

0 (x− y) if d = 2
1

4π
eik|x−y|

|x−y| if d = 3
,
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and the radiation condition can be written as

∂U

∂r
− ikU = ϕ(r) = o

(
r(1−d)/2

)
.

With all these prerequisites, it is readily to verify that the shape gradient and

Hessian now read, for d = 2, 3,

DJ (r; r̂) = −
∫
S

[
∇
(
U + U I

)
· ∇u+∇

(
U + U

I
)
· ∇u

]
rr̂ gdθ,

D2J (r; r̂, r̃) =

∫
Ω

K
[
Ũ(r̂)Ũ(r̃) + Ũ(r̃)Ũ(r̂)

]
dΩ︸ ︷︷ ︸

H1(r;r̂,r̃)

−
∫
S

[
∂Ũ(r̂)

∂n

∂u

∂n
+
∂Ũ(r̂)

∂n

∂u

∂n

]
rr̃ gdθ︸ ︷︷ ︸

H2(r;r̂,r̃)

−
∫
S

[
∂Ũ(r̃)

∂n

∂u

∂n
+
∂Ũ(r̃)

∂n

∂u

∂n

]
rr̂ gdθ︸ ︷︷ ︸

H2(r;r̃,r̂)

−
∫
S

(d− 1)

∂ (U + U I
)

∂n

∂u

∂n
+
∂
(
U + U

I
)

∂n

∂u

∂n

 r̂r̃ gdθ
︸ ︷︷ ︸

H3(r;r̂,r̃)

−
∫
S

∂
[
∇
(
U + U I

)
· ∇u+∇

(
U + U

I
)
· ∇u

]
∂er

rr̂r̃ gdθ︸ ︷︷ ︸
H4(r;r̂,r̃)

.

One can also verify that all the results from Section 5 to Section 7 hold for three

dimensional setting as well with minor adjustments; hence we omit the detail. Results

on the decay of eigenvalues of the Gauss-Newton part similar to that of Section 8 can

be extracted from [35].
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